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Abstract. We present efficient algorithms for simplifying tensor expressions that obey generic
symmetries. We define the canonical form of a single tensor and we show that the problem of
finding the canonical form of a generic tensor expression reduces to finding the canonical form of
single tensors. Special symmetries are considered in order to push the efficiency further. We also
present algorithms to address the cyclic symmetry of the Riemann tensor. With these algorithms it
is possible to simplify generic Riemann tensor polynomials.

1. Introduction

The simplification of tensor expressions is tricky and cumbersome to perform by manual
calculations. Expressions with the Riemann tensor provide good examples. It is difficult to
show by hand that

RabcdRef khRia
j
eRbcdiRf khj = 0.

This example does not require the use of the cyclic identity of the Riemann tensor. The next
example is more difficult to prove:

2RabcdRef akR
h
c
k
bRdhef + 4RabcdRef kaR

h
bceRdkf h

−RabcdRef kaRhbf eRcdkh + 4RabcdRhkdf R
ef
kaRhbce = 0.

These examples, among others, show the necessity of constructing algorithms for tensor
simplifications that can be implemented in a computer language. Such algorithms are
extensions of the simplification problem of algebraic expressions and have a natural place
in computer algebra systems.

The main references that address the tensor simplification problem from an algorithmic
point of view are Portugal [1], Dresse [2], Ilyin and Kryukov [3] and Jaén and Balfaǵon [4].
The simplification of Riemann tensor polynomials is addressed by Parker and Christensen [5]
and Fullinget al [6].

In this paper we use the abstract-index notation for tensor expressions (see a careful
description of the abstract-index notation in Penrose and Rindler [7], and take Lovelock
and Rund [8] as a general reference for the tensor calculus). We assume that the metric
is symmetric and the tensor product is commutative as usual. This work can be extended
easily for antisymmetric metrics (such as the two-spinor calculus metric [7]) and for anti-
commutative products (such as in Grassmann algebras). We take the definition of canonical
form from Geddeset al [9].
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The strategy of this paper is as follows. The first part addresses the simplification
problem considering only the monoterm symmetries (symmetries that involve only index
permutations). The second part addresses the multiterm symmetries (cyclic symmetries). In
the first part we define the canonical form of a single tensor with a generic monoterm symmetry
(section 2). By using the full reduction method, we define the canonical form of a generic
tensor expression (section 3). Special methods for two kinds of symmetry are developed in
order to increase the efficiency (section 4). The cyclic symmetry of the Riemann tensor is
addressed in section 5. The algorithms presented here allow one to simplify Riemann tensor
polynomials efficiently.

2. Definition of the canonical form of a single tensor

We address monoterm symmetries separately from multiterm symmetries. A monoterm
symmetry of a tensorT is a finite equivalence class of the form

{εσ1T
σ1, εσ2T

σ2, . . .} (1)

whereεσ is either 1 or−1, andσ is a permutation of the indices ofT . For now, suppose thatT
obeys a generic monoterm symmetry. Multiterm symmetries will be considered in section 5.

2.1. Configurations with no dummy indices

Suppose that all indices ofT are contravariant free indices. The description of the symmetry is
completeif it is not possible to generate a new member in the equivalence class (1), that is, all
combinationsσk = σi ◦ σj are present. Clearly, the set{σ1, σ2, . . .} of a complete symmetry
is a subgroup of the permutation groupSn wheren is the rank ofT . The symmetry cancels
the tensor if and only if there are two equal permutationsσi = σj such thatεσi = −εσj . For
example, the symmetry described incompletely by

T ijk = −T kij (2)

cancels the tensor, since the equivalence class is

{T ijk,−T kij , T jki ,−T ijk, T kij ,−T jki}. (3)

For each element of the equivalence class we can associate a numerical list. Now we
establish an ordering for the numerical lists. Consider two ordered lists (L1 andL2) of non-
repeated positive integers. The lists have the same number of elementsn. We define recursively
the relation ‘<’ for lists: L1 < L2 if

L1[1] < L2[1] or (L1[1] = L2[1] and L1[2..n] < L2[2..n]) (4)

whereL[i] means theith element ofL andL[2..n] means list(L[2], L[3], . . . , L[n]).
We define thecanonical formof T using the following procedure. LetF be the index

list sorted into alphabetical order. Consider the list of equations list(F [i] = i, i = 1..|F |),
where|F | is the number of elements of listF . The indices of each element of the equivalence
class (1) are replaced by numbers according to this list of equations. So, to each element of
the equivalence class, we associate a numerical list. The canonical form is the configuration
εiT

σi associated with the smallest numerical list. If there are free covariant indices, a similar
procedure is applied. LetF up be the sorted list of contravariant indices andF dn be the sorted
list of covariant indices. The substitution equations are

list(F up[i] = i, i = 1..|F up|) list(F dn[i] = i + |F up|, i = 1..|F dn|). (5)
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For example, letT be a totally symmetric tensor. The configurationTj bia is associated
with [4, 2, 3, 1], since the substitution equations area = 1, b = 2, i = 3, j = 4. The
canonical configuration isT abij , which is associated with [1, 2, 3, 4].

2.2. Configurations with dummy indices

Now suppose that there are dummy indices in the original configuration ofT . The equivalence
class (1) can be generated by the permutationsσi pretending that all indices are free. There
are two operations that generate new elements in the equivalence class when there are dummy
indices. The character of a pair of dummy indices can be inverted (e.g.T kk → Tk

k) and the
names of the dummy indices can be replaced by other ones (e.g.T kk → T j j ). One of the
goals of this work is to show that only the symmetry class (1) need be considered in order to
find the canonical form. We follow two conventions throughout this work.

Convention 1. The character of the first index of a pair of dummy indices is contravariant,
and the character of the second is covariant.

Convention 2. The name of the dummy indices is given byi j , wherei is the position of the
contravariant index,j is the position of the covariant index andis some separator. e.g. for
the configurationT kl lk, we havek = 1 4 andl = 2 3.

Now let us define the canonical form for a configuration with dummy indices. We
have already established the substitution equations for the free indices†. Now we define
the substitution equations for the dummy indices. There are two kinds of pairs of dummy
indices depending on how they are affected by the symmetry. The first kind consists of the
pairs for which both indices change position in the equivalence class (1). The second kind
consists of the pairs for which one index changes position while the other maintains its position
for all elements of the equivalence class. The pairs that have both indices fixed need not be
considered, they simply obey convention 2.

The contravariant indices of the first kind form classAup and the covariant indices form
classAdn. The non-fixed indices of the second kind form classB and the fixed indices form
classBfixed. These classes are ordered lists. The order of indices of classesAup follows the
occurrence order of the indices in each configurationεiT

σi . The substitution equations are

list(Aup[i] = i + |F up| + |F dn|, i = 1..|Aup|). (6)

The substitution equations for classAdn are the same for classAup except for a shift of|Aup|.
For example, if the indexk ∈ Aup is replaced by 5, the corresponding index of classAdn is
replaced by 5 +|Aup|.

The order of classBfixed follows the occurrence order of the index list ofT . Notice that
all elements of (1) have the same classBfixed. The substitution equations are

list(Bfixed[i] = i + |F up| + |F dn| + 2|Aup|, i = 1..|Bfixed|). (7)

The indices of classBfixed are not replaced by numbers. The substitution equations (7) are
used to replace the indices of classB.

For example, letTj iaabccb be the actual configuration of the indices of a tensorT totally
symmetric in the first six indices. The classes areF up = i, F dn = j , Aup = aup, Adn = adn,
Bfixed = c, b. Only the indices affected by the symmetry need to be replaced by numbers. We
obtain the following list: [2, 1, 4, 3, 6, 5]. The equivalence class ofT has all permutations

† The method presented here is a simplified version of the method of [1]. Balfagón kindly informed us that he used
a similar method in [4].
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of [2, 1, 4, 3, 6, 5]. The smallest list is [1, 2, 3, 4, 5, 6], and the canonical form isT ij aacbcb
wherea = 3 4, c = 5 7, b = 6 8.

We have defined the canonical form of a single tensor (with or without contractions) with
a generic monoterm symmetry. Using thefull reduction methoddescribed below, we show that
the problem of finding the canonical form of a generic tensor expression reduces to finding the
canonical form of single tensors (which will be calledmerged tensors).

3. Canonical form of a tensor expression: the full reduction method

Now we describe the reduction process that a generic tensor expression passes through in order
that the canonical form be obtained. Part of this process is described in [1]. We consider here
only the main steps.

A generic tensor expression is expanded and expressed as a linear combination of tensor
monomials. A tensor monomial is split into two groups. Group I consists of tensors with
symmetries. Group II consists of tensors with no symmetries. Tensors of group I are
placed in the left-hand positions and tensors of group II in the right-hand positions using
the commutativity property of the product.

Tensors of group II with the same name and number of indices and with no free indices
merge into a new tensor. Suppose that each original tensor hasn indices and that there areN
equal tensors, then the new tensor hasnN indices and is totally symmetric under interchange
of the groups of then indices. After the merging, the resulting tensors are incorporated into
group I. The information about the relation with original tensors is stored, since it will be used
at the end of the algorithm to replace the new tensors by the original tensors.

Tensors of group I with the same names, same number of indices and same number of
free indices merge to form a new tensor. The new tensor has the same symmetry under the
interchange of group of indices as described for group II, and each group of indices inherits
the symmetries of the original tensors.

The tensors are lexicographically sorted inside each group. Tensors with the same name
but a different number of indices are sorted according to the number of indices. Tensors with
the same name and the same number of indices are sorted according to the number of free
indices. Tensors of group II with the same name, the same number of indices and the same
number of free indices are sorted according to the name of the first free index. Notice that the
free indices have fixed positions for tensors of group II.

The whole monomial merges into a single tensor (from now on called themerged tensor).
The number of indices of the merged tensor is equal to the total number of indices of the
monomial. The ordering of the indices obeys the ordering of the indices of each term of the
monomial. The merged tensor inherits all the symmetries of the tensors of the monomial.

Let us show an example. Suppose that the monomial to be simplified is

SijTmpA
iBkA

jSkm (8)

whereSkm is totally symmetric andTmp has no symmetry. The repeated tensors merge and the
ordering of the terms is

A AijS Sij
kmBkTmp (9)

whereA A is the name for the new tensor generated after mergingAi andAj . The tensor
A Aij is totally symmetric and the symmetries ofS Sijkm are

S Sijkm = S Sjikm
S Sijkm = S Sijmk
S Sijkm = S Skmij .
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The merged tensor is

Mij
ij
km
kmp (10)

and the symmetries are

Mijklmnopq = Mjiklmnopq

Mijklmnopq = Mijlkmnopq

Mijklmnopq = Mijklnmopq

Mijklmnopq = Mijmnklopq .

The canonical form of (10) is

Mijkm
ijkmp (11)

and therefore the canonical form of (8) is

AiAjSkmSijBkTmp (12)

wherei = 1 5, j = 2 6, k = 3 7 andm = 4 8.
To summarize, we have described an algorithm that converts a tensor expression into a

sum of merged tensors. Each merged tensor can be put into canonical form. The elements of
the equivalence class (1) must obey convention 1. The indices affected by the symmetry are
replaced by numbers according to the substitution equations for classesF up,F dn,Aup,Adn and
B. Note that the substitution equations for classesF up,F dn andB are the same for all elements
of the equivalence class (1), while the substitution equations forAup andAdn depend on each
element. The configuration with the smallest numerical list corresponds to the canonical form.
By the inverse process, each merged tensor can be converted back to a tensor monomial with the
indices in the new order and obeying convention 2. The resulting expression is the canonical
form of the original expression with respect to the monoterm symmetries†.

3.1. Variations of the full reduction

There are cases that do not need the full monomial reduction.

(a) Tensors with no symmetries and no dummy indices need not be merged.
(b) If there are two or more groups that have no dummy indices in common, they can be

split and each group can be put into the canonical form independently of each other. For
example, the monomial (8) can be split into two groups

SijA
iAj SkmBkTmp (13)

and each one can be considered separately. A special case occurs when there are two or more
groups with the same canonical form. These groups cannot split. They merge like the other
tensors in order to generate (unique) canonical names for the dummy indices.

† Note about the original algorithm of[1]. ClassesSI andSII disappear with the full reduction process. Both subclass
S0+

I and classSII reduce to classB, subclassS0−
I toBfixed and subclassesSiI to classA. Although the implementation

of the monomial reduction to a single tensor is cumbersome, it simplifies the general structure of the algorithm by the
complete elimination of classesSI andSII . The result of the new algorithm is not the same compared to the original
algorithm, since the positions of the classesSI andSII have changed.
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4. Special algorithms

In this section we present special algorithms for two kinds of symmetries that occur frequently
in practical applications. We define compact forms for them which replace the equivalence
class.

The first kind is described by

sym(i1, i2, . . . , im) & sym(j1, j2, . . . , jn) & · · · (14)

such that

i1 < · · · < im < j1 < · · · < jn < · · · (15)

where ‘sym’ means symmetric (‘asym’ means antisymmetric) andi1, i2, . . . are numbers
describing slots (index positions) in the index configuration. These numbers need not be
consecutive.

The second kind is described by

symin block(i1, i2, . . . , im)(j1, j2, . . . , jm) . . . . (16)

The numbersi1, i2, . . . obey equation (15). This symmetry states that the interchange of
blocks (i1, . . . , im), (j1, . . . , jm) and so on generates equivalent configurations. The symmetry
asymin block means the same, but a negative sign is introduced for odd permutations. For
example, the symmetry

T abcijk = −T ijkabc (17)

is described byasym(1, 2, 3)(4, 5, 6). The symmetries in blocks can be combined among
themselves and with symmetries of the first kind using the character &. For example,
the compact description of the monoterm symmetries of the Riemann tensor isasym(1, 2)
& symin block(1, 2)(3, 4). The completedescription of these compact forms means that
whenever there is a symmetrysymin block, the symmetries of a single block is repeated
for all blocks. For example, the complete compact description of the Riemann symmetries
is asym(1, 2) & asym(3, 4) & symin block(1, 2)(3, 4). In the sequel, we assume that the
description of the monoterm symmetries is complete. We will not present a full analysis of the
combination of these symmetries, but the interested reader can find some insights in section 3.3
of Penrose and Rindler’s book [7].

4.1. Symmetric indices

Suppose that the symmetry of the merged tensor is of the form (14). This symmetry occurs
when the merged tensor comes from a monomial built of different tensors, some of them totally
symmetric. For this kind of symmetry, it is not necessary to generate the equivalence class
in order to find the canonical form. The indices can be put into their canonical positions in a
straightforward way. The substitution equations for classesF up, F dn andB are given by (5)
and (7). Now we describe how classA is replaced by numbers. Consider group(i1, i2, . . . , im)
of (14). There are two kinds of indices of classA. The indices that are contracted with indices
of the same group (p indices) and indices that are contracted with indices of other groups (q

indices such thatp + q 6 m). The first index of the first kind receives the numberf + 1, the
secondf +2 and so on until the last that receive the numberf +p, wheref = |F up|+|F dn|. The
corresponding indices receive a shift of|Aup|. The indices of the second kind are numbered
according to the order of the corresponding indices. The index of the second kind contracted
with the first corresponding index receives the numbersf + p + 1. The index contracted with
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the second receivesf + p + 2, and so on untilf + p + q. The corresponding indices receive
a shift of |Aup|. The same procedure is performed for the other groups in sequence. After all
indices have been replaced by numbers, they are sorted inside each group. The free indices
are replaced by their original names and the dummy indices obey convention 2. The indices
are in the canonical positions now.

For example, consider the index configurationT abcacibj with the symmetrysym(1, 2, 3,
4) & sym(5, 6) & sym(7, 8). The first group has the following substitution equations:
aup = 3, bup = 5, cup = 4, adn = 6. Eventually we obtain the following numerical
configuration:T 354

67182. By a straightforward sorting process inside the groups, we obtain
the configurationT 345

61728. The canonical form isT acbaicjb, wherea = 1 4, c = 2 6 and
b = 3 8.

If one or more groups are antisymmetric, there are two remarks. First, one must keep track
of the sign change for each index permutation during the sorting process at the end. Secondly,
one must verify whether there are antisymmetric indices which contract with symmetric indices.
This is the only case that can cancel the merged tensor according to lemma 2 of [1].

The solution for this kind of symmetry can be considered optimal in the sense that given
an index configuration, the canonical form is obtained in a straightforward manner. Neither
the equivalence class nor a subset need be generated.

4.2. Symmetric under the interchange of groups of indices

Suppose that the merged tensor is symmetric under the interchange ofN groups of indices
(described by (16)). The groups can have two or more totally symmetric indices (combination
of (16) and (14)). This kind of symmetry occurs when the merged tensor comes from a
monomial that has tensors (some of them totally symmetric) with the same name, same number
of indices and same number of free indices. In the general case, it is necessary to generate
all permutations of the symmetric groups (N ! permutations), and each permutation can be
put straightforwardly into the canonical position by the method discussed previously for the
symmetric indices (section 4.1).

If the merged tensor is antisymmetric under the interchange of groups of indices, there
are two remarks. First, one must keep track of the sign for group permutations. Secondly,
one must verify whether there are two canonical forms with opposite signs at the end of the
algorithm. Lemma 2 of [1] guarantees that if the merged tensor is zero then the algorithm
above will generate two equivalent configurations with opposite signs.

5. The cyclic symmetry

A tensorT obeys the cyclic symmetry in the indicesi, j, k if

T ijk + T kij + T jki = 0. (18)

T can have more indices that are held fixed. IfT ijk obeys the cyclic symmetry and is
antisymmetric in two indices of the set{i, j, k}, then

T [ijk] = 0 (19)

where the square brackets denote antisymmetrization.

5.1. Isolated cyclic symmetry

Suppose that the indices obeying the cyclic symmetry do not obey any other kind of symmetry.
In order to address the cyclic symmetry of the merged tensor, we assume that it was put
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into the canonical form with respect to the monoterm symmetries. Suppose that the indices
obeying the cyclic symmetry arei, j, k. Let us establish the substitution equations for the
set{i, j, k}. The contravariant free indices of this set form the classF up. The covariant free
indices form the classF dn. The remaining indices form classC. The substitution equations
for classesF up andF dn are given by equations (5). The substitution equations for classC

are based on the order of the corresponding indices. The numbers reserved for this class are
(|F up| + |F dn| + 1)..3. If there is a pair of dummy indices within classC, the substitution
equations are obtained based on the contravariant index, and the number for the covariant
index is|F up| + |F dn| + |C| + 1. For example, ifT abba has cyclic symmetry on the first three
indices (and no other monoterm symmetry), classesF up andF dn are empty, and classC is
[a, bup]. The substitution equations area = 2, bup = 1 andbdn = 3. For the generic case, the
algorithm generates the equation

T kji = −T ikj − T jik. (20)

Only the indices obeying the cyclic symmetry are represented in equation (20). These indices
need not be consecutive. The remaining indices are held fixed. Equation (20) will be used
depending on the following criteria. If the numerical list associated with the original expression
is smaller† than the lists associated with the numerical configurations of the terms of the right-
hand side of equation (20), then the configuration can be improved by (20). Otherwise the
original configuration is in the canonical form.

If there are more indices obeying the cyclic symmetry (and obeying no other kind of
symmetry), the same procedure is applied to the tensors of the right-hand side of equation (20)
in a recursive way, until all independent cyclic symmetries have been covered. The number
of terms will be at most 2n, wheren is the number of independent cyclic symmetries ofT .
In general, the canonical form of a single tensor obeying multiterm symmetries is a sum of
tensors, while the canonical form obeying only monoterm symmetries is always a single tensor.

5.2. The cyclic symmetry of the Riemann tensor

The next important case occurs when the indicesi, j, k, l of a tensorT with at least four indices
obey the symmetries of the Riemann tensor (and no other symmetries). The symmetries are

T ijkl = −T jikl = −T ijlk (21)

T ijkl = T klij (22)

T ijkl + T iljk + T iklj = 0. (23)

In order to address the Riemann symmetry, we assume that the merged tensor is put into
the canonical form with respect to the monoterm symmetries, and its configuration isT iljk.
Indicesi, j, k, l can be free or dummy indices (they represent generic indices). Using the
substitution equations of section 2, we can replace these indices by numbers. Letin, jn, kn, ln
be the corresponding numbers. The order of the indices of the merged tensor can be improved
only if

ln > jn and ln > kn. (24)

In this case, the merged tensor is replaced by

T iljk = T ikjl − T ijkl . (25)

† See the definition given by expression (4).
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If equation (24) is true, the canonical form is the right-hand side of equation (25). If
equation (24) is false, the index configuration cannot be improved. If there are other groups
of four indices obeying the symmetries of the Riemann tensor, the same procedure is applied
recursively to the right-hand side of equation (25).

When the original tensor expression is the product of Riemann tensors with the same
number of free indices, the symmetry of the merged tensor is the symmetry of the Riemann
tensor in each consecutive group of four indices, and totally symmetric under the interchange
of these groups. For example, the Riemann invariants (product of Riemann tensors fully
contracted) fall in this case.

In order to find the canonical form, consider the first group of four indices. If equation (24)
is satisfied, apply equation (25) and call the whole algorithm recursively. If equation (24) is
false, the numerical configuration ofT (LT ) is stored in order to be compared with the following
result. Equation (25) is used (even with (24) false) generating two terms. The algorithm for
monoterm symmetries is applied for each term generating two numerical configurations. Let
us call theseLT1 andLT2.

If

LT1 < LT and LT2 < LT (26)

then the configurationT was improved and the algorithm is called recursively over the sumT1

andT2 (with the proper sign).
If

(LT1 = LT and LT2 < LT ) or (LT1 < LT and LT2 = LT ) (27)

then the configurationT can be improved by the equationT = 1
2T2 if LT1 = LT (or T = 1

2T1

if LT2 = LT ). See the forthcoming example in order to verify the sign ofT1 andT2.
If

LT < LT1 or LT < LT2 (28)

then the index configuration cannot be improved by the application of the cyclic symmetry
over the first four indices. The same procedure is applied to the next group of four indices and,
if equation (28) is satisfied again, the same procedure is applied to the next group and so on
until we reach the last group†.

For example, consider the following monomial built of Riemann tensors:

RabcdRea
f
cRbf de. (29)

This configuration is in the canonical form with respect to the monoterm symmetries (except
for the names of the dummy indices). All indices are members of classA and the numerical
configuration of the merged tensor is [1, 2, 3, 4, 5, 7, 6, 9, 8, 12, 10, 11]. Consider group
a, b, c, d of expression (29). Even with equation (24) false, we apply equation (25) to obtain

(Radcb − Racdb)Reaf cRbf de. (30)

The canonical form with respect to the monoterm symmetries is‡

RabcdRea
f
cRbedf − RabcdRef acRbedf . (31)

† There is an alternate method based on a library of pre-defined rules [5] which has a drawback: the number of rules
is huge for Riemann monomials with free indices (see [6]).
‡ The canonical form uses convention 2 for naming the dummy indices. In the next expressions we have replaced
the canonical names bya, b, c, d, e, f .
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Let us call the first termT1, and the second termT2. The numerical configurations
are [1, 2, 3, 4, 5, 7, 6, 9, 8, 11, 10, 12] and [1, 2, 3, 4, 5, 6, 7, 9, 8, 11, 10, 12], respectively.
Notice that both configurations are smaller than the original one. The application of the
algorithm onT1 does not generate any improvement, since equations (26) and (27) are not
satisfied for any of the 4-index groups. So,T1 is in the canonical form with respect to the
full symmetry (monoterm plus cyclic symmetries). The algorithm is applied recursively toT2.
The application of equation (25) on groupa, b, c, d generates the following terms already in
the canonical form with respect to the monoterm symmetries:

−RabcdRef acRbedf +RabcdRef abRcedf . (32)

The first term is equal to−T2 while the second term (let us call itT3) has the numerical
configuration [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 12]. T2 is replaced by1

2T3. T3 can be improved
further by the application of equation (25) on the last group of indices:c, e, d, f . The result
is

−RabcdRef abRcedf +RabcdRef abRcdef . (33)

The first term is equal to−T3 while the second term has the numerical configuration
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] which cannot be improved further. The canonical form
of the original expression (29) (except for the names of the dummy indices) is

RabcdRea
f
cRbedf − 1

4R
abcdRef abRcedf . (34)

6. Conclusion

Reference [1] suggests the use of the Gröbner basis method to address the simplification
problem of tensor expressions obeying multiterm symmetries. The Gröbner method is suitable
if the number of side relations is not large, since it has very narrow limitations concerning
efficiency. For Riemann tensor polynomials the number of side relations is huge. The method
presented here solves this drawback.

The full reduction method plays a central role, since it simplifies the general structure of
the algorithm. In other words, we have proved the following proposition.

Proposition. The problem of finding the canonical form of a generic tensor expression reduces
to finding the canonical form of single tensors.

This proposition tells us that it is simpler to address the tensor simplification problem by
finding the canonical form of a single tensor and using the full reduction method for monomials
than to address it by implementing algorithms for tensor monomials that will be unavoidably
repeated for single tensors.
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